Field Guide to Terahertz Sources, Detectors, and Optics

I recently came across this very handy and useful publication. It is helpful to anyone who wants to understand the design of quasi-optical elements, which are for example used in many high-field EPR spectrometers.

O’Sullivan, Créidhe M., and J. Anthony Murphy. Field Guide to Terahertz Sources, Detectors, and Optics. SPIE, 2012.

https://doi.org/10.1117/3.952851.

The region of the electromagnetic spectrum between microwaves and infrared radiation has come to be known as the “THz gap,” mainly due to the lack of readily available laboratory sources and detectors. For many years technology development was driven by astronomers and planetary scientists, but other potential uses, particularly in medical and security applications, have led to increased activity by the mainstream physics and engineering community in recent times. Because diffraction is important at these frequencies, THz systems cannot be successfully designed using traditional optical techniques alone.

The primary objective of this Field Guide is to provide the reader with a concise description of the quasi-optical techniques used at THz frequencies, as well as the basic principles of operation of the most common THz system components in use today. More detailed accounts of specific devices can be found in the bibliography and references therein.

Might this article interest your colleagues? Share it!

Have a question?

If you have questions about our instrumentation or how we can help you, please contact us.