Category Archives: low field DNP

A compact X-Band ODNP spectrometer towards hyperpolarized 1H spectroscopy #DNPNMR #ODNP

Überrück, Till, Michael Adams, Josef Granwehr, and Bernhard Blümich. “A Compact X-Band ODNP Spectrometer towards Hyperpolarized 1H Spectroscopy.” Journal of Magnetic Resonance, April 2020, 106724.

The demand for compact benchtop NMR systems that can resolve chemical shift differences in the ppm to sub-ppm range is growing. However due to material and size restrictions these magnets are limited in field strength and thus in signal intensity and quality. The implementation of standard hyperpolarization techniques is a next step in an effort to boost the signal. Here we present a compact Overhauser Dynamic Nuclear Polarization (ODNP) setup with a permanent magnet that can resolve 1H chemical shift differences in the ppm range. The assembly of the setup and its components are described in detail, and the functionality of the setup is demonstrated experimentally with ODNP enhanced relaxation measurements yielding a maximal enhancement of -140 for an aqueous 4Hydroxy-TEMPO solution. Additionally, 1H spectroscopic resolution and significant enhancements are demonstrated on acetic acid as a solvent.

Dynamic nuclear polarisation of liquids at one microtesla using circularly polarised RF with application to millimetre resolution MRI

Hilschenz, Ingo, Sangwon Oh, Seong-Joo Lee, Kwon Kyu Yu, Seong-min Hwang, Kiwoong Kim, and Jeong Hyun Shim. “Dynamic Nuclear Polarisation of Liquids at One Microtesla Using Circularly Polarised RF with Application to Millimetre Resolution MRI.” Journal of Magnetic Resonance 305 (August 2019): 138–45.

Magnetic resonance imaging in ultra-low fields is often limited by mediocre signal-to-noise ratio hindering a higher resolution. Overhauser dynamic nuclear polarisation (O-DNP) using nitroxide radicals has been an efficient solution for enhancing the thermal nuclear polarisation. However, the concurrence of positive and negative polarisation enhancements arises in ultra-low fields resulting in a significantly reduced net enhancement, making O-DNP far less attractive. Here, we address this issue by applying circularly polarised RF. O-DNP with circularly polarised RF renders a considerably improved enhancement factor of around 150,000 at 1.2 lT. A birdcage coil was adopted into an ultra-low field MRI system to generate the circularly polarised RF field homogeneously over a large volume. We acquired an MR image of a nitroxide radical solution with an average in-plane resolution of 1 mm. De-noising through compressive sensing further improved the image quality.

Yoder, J. L., P. E. Magnelind, M. A. Espy, and M. T. Janicke. “Exploring the Limits of Overhauser Dynamic Nuclear Polarization (O-DNP) for Portable Magnetic Resonance Detection of Low γ Nuclei.” Applied Magnetic Resonance 49, no. 7 (July 2018): 707–24.

Nuclear magnetic resonance (NMR) spectroscopy in portable, permanent magnet-based spectrometers is primarily limited to nuclei with higher gyromagnetic ratio, γ, such as 1H, 19F, and 31P due to the limited field strength achievable in these systems. Overhauser effect dynamic nuclear polarization (O-DNP), which transfers polarization from an unpaired electron to a nucleus by saturating an electron paramagnetic resonance transition with an oscillating radio frequency magnetic field, B1e, can increase the polarization of low γ nuclei by hundreds or even thousands, enabling detection in a portable system. We have investigated the potential for O-DNP to enhance signals using (4-amino-2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO hereafter) as a source of unpaired electrons in a homebuilt ultra-low field (ULF) O-DNP-NMR spectrometer. We have found, in general, that larger concentrations of TEMPO are required for effective O-DNP with low γ nuclei, which has a number of important effects. Spin exchange effects cause the EPR lines to overlap and ultimately merge at high concentrations of TEMPO, fundamentally increasing the maximum possible enhancement, while the electron–electron dipolar interaction reduces both longitudinal and transverse relaxation times for the electrons, dramatically increasing the required B1e strength. The relationship between TEMPO concentration, B1e magnitude and O-DNP enhancement is quantified, and strategies for achieving these fields are discussed.

Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals

Ito, S. and F. Hyodo, Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals. Scientific Reports, 2016. 6: p. 21407.

Highly water-soluble ubiquinone-0 (CoQ0) reacts with ascorbate monoanion (Asc) to mediate the production of ascorbyl free radicals (AFR). Using aqueous reaction mixture of CoQ0 and Asc, we obtained positively enhanced dynamic nuclear polarization (DNP)-magnetic resonance (MR) images of the AFR at low frequency (ranging from 515 to 530 MHz) of electron spin resonance (ESR) irradiation. The shape of the determined DNP spectrum was similar to ESR absorption spectra with doublet spectral peaks. The relative locational relationship of spectral peaks in the DNP spectra between the AFR (520 and 525 MHz), 14N-labeled carbamoyl-PROXYL (14N-CmP) (526.5 MHz), and Oxo63 (522 MHz) was different from that in the X-band ESR spectra, but were similar to that in the 300-MHz ESR spectra. The ratio of DNP enhancement to radical concentration for the AFR was higher than those for 14N-CmP, Oxo63, and flavin semiquinone radicals. The spectroscopic DNP properties observed for the AFR were essentially the same as those for AFR mediated by pyrroloquinoline quinone. Moreover, we made a success of in vivo DNP-MR imaging of the CoQ0-mediated AFR which was administered by the subcutaneous and oral injections as an imaging probe.

Dynamic nuclear polarization in the hyperfine-field-dominant region

Lee, S.-J., et al., Dynamic nuclear polarization in the hyperfine-field-dominant region. J. Magn. Reson., 2015. 255(0): p. 114-121.

Dynamic nuclear polarization (DNP) allows measuring enhanced nuclear magnetic resonance (NMR) signals. Though the efficiency of DNP has been known to increase at low fields, the usefulness of DNP has not been throughly investigated yet. Here, using a superconducting quantum interference device-based NMR system, we performed a series of DNP experiments with a nitroxide radical and measured DNP spectra at several magnetic fields down to sub-microtesla. In the DNP spectra, the large overlap of two peaks having opposite signs results in net enhancement factors, which are significantly lower than theoretical expectations [30] and nearly invariant with respect to magnetic fields below the Earth’s field. The numerical analysis based on the radical’s Hamiltonian provides qualitative explanations of such features. The net enhancement factor reached 325 at maximum experimentally, but our analysis reveals that the local enhancement factor at the center of the rf coil is 575, which is unaffected by detection schemes. We conclude that DNP in the hyperfine-field-dominant region yields sufficiently enhanced NMR signals at magnetic fields above 1 μ T.

Hydration dynamics as an intrinsic ruler for refining protein structure at lipid membrane interfaces

Cheng, C.-Y., et al., Hydration dynamics as an intrinsic ruler for refining protein structure at lipid membrane interfaces. Proc. Nat. Aca. Sci. USA, 2013. 110(42): p. 16838-16843.

Knowing the topology and location of protein segments at water–membrane interfaces is critical for rationalizing their functions, but their characterization is challenging under physiological conditions. Here, we debut a unique spectroscopic approach by using the hydration dynamics gradient found across the phospholipid bilayer as an intrinsic ruler for determining the topology, immersion depth, and orientation of protein segments in lipid membranes, particularly at water–membrane interfaces. This is achieved through the site-specific quantification of translational diffusion of hydration water using an emerging tool, 1H Overhauser dynamic nuclear polarization (ODNP)-enhanced NMR relaxometry. ODNP confirms that the membrane-bound region of α-synuclein (αS), an amyloid protein known to insert an amphipathic α-helix into negatively charged phospholipid membranes, forms an extended α-helix parallel to the membrane surface. We extend the current knowledge by showing that residues 90–96 of bound αS, which is a transition segment that links the α-helix and the C terminus, adopt a larger loop than an idealized α-helix. The unstructured C terminus gradually threads through the surface hydration layers of lipid membranes, with the beginning portion residing within 5–15 Å above the phosphate level, and only the very end of C terminus surveying bulk water. Remarkably, the intrinsic hydration dynamics gradient along the bilayer normal extends to 20–30 Å above the phosphate level, as demonstrated with a peripheral membrane protein, annexin B12. ODNP offers the opportunity to reveal previously unresolvable structure and location of protein segments well above the lipid phosphate, whose structure and dynamics critically contribute to the understanding of functional versatility of membrane proteins.

Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control

Sakaguchi, S., et al., Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013. 317(0): p. 679-684.

Proton polarization at room temperature, produced in a p-terphenyl crystal by using electron population difference in a photo-excited triplet state of pentacene, was enhanced by utilizing an intense laser with an average power of 1.5 W. It was shown that keeping the sample temperature below 300 K is critically important to prevent the rise of the spin–lattice relaxation rate caused by the laser heating. It is also reported that the magnitude of proton polarization strongly depends on the time structure of the laser pulse such as its width and the time interval between them.

Have a question?

If you have questions about our instrumentation or how we can help you, please contact us.