Category Archives: Frequency-Modulation

Enhanced Dynamic Nuclear Polarization via Swept Microwave Frequency Combs #DNPNMR

Ajoy, A., R. Nazaryan, K. Liu, X. Lv, B. Safvati, G. Wang, E. Druga, et al. “Enhanced Dynamic Nuclear Polarization via Swept Microwave Frequency Combs.” Proceedings of the National Academy of Sciences 115, no. 42 (October 16, 2018): 10576–81. 

https://doi.org/10.1073/pnas.1807125115.

Dynamic nuclear polarization (DNP) has enabled enormous gains in magnetic resonance signals and led to vastly accelerated NMR/MRI imaging and spectroscopy. Unlike conventional cw-techniques, DNP methods that exploit the full electron spectrum are appealing since they allow direct participation of all electrons in the hyperpolarization process. Such methods typically entail sweeps of microwave radiation over the broad electron linewidth to excite DNP but are often inefficient because the sweeps, constrained by adiabaticity requirements, are slow. In this paper, we develop a technique to overcome the DNP bottlenecks set by the slow sweeps, using a swept microwave frequency comb that increases the effective number of polarization transfer events while respecting adiabaticity constraints. This allows a multiplicative gain in DNP enhancement, scaling with the number of comb frequencies and limited only by the hyperfine-mediated electron linewidth. We demonstrate the technique for the optical hyperpolarization of 13C nuclei in powdered microdiamonds at low fields, increasing the DNP enhancement from 30 to 100 measured with respect to the thermal signal at 7T. For low concentrations of broad linewidth electron radicals [e.g., TEMPO ((2,2,6,6- tetramethylpiperidin-1-yl)oxyl)], these multiplicative gains could exceed an order of magnitude.

Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization

Hoff, D.E., et al., Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization. Solid State Nucl Magn Reson, 2015. 72: p. 79-89.

http://www.ncbi.nlm.nih.gov/pubmed/26482131

Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions.

Dynamic nuclear polarization by frequency modulation of a tunable gyrotron of 260GHz

Yoon, D., et al., Dynamic nuclear polarization by frequency modulation of a tunable gyrotron of 260GHz. J Magn Reson, 2016. 262: p. 62-7.

http://www.ncbi.nlm.nih.gov/pubmed/26759116

An increase in Dynamic Nuclear Polarization (DNP) signal intensity is obtained with a tunable gyrotron producing frequency modulation around 260GHz at power levels less than 1W. The sweep rate of frequency modulation can reach 14kHz, and its amplitude is fixed at 50MHz. In water/glycerol glassy ice doped with 40mM TEMPOL, the relative increase in the DNP enhancement was obtained as a function of frequency-sweep rate for several temperatures. A 68 % increase was obtained at 15K, thus giving a DNP enhancement of about 80. By employing lambda/4 and lambda/8 polarizer mirrors, we transformed the polarization of the microwave beam from linear to circular, and achieved an increase in the enhancement by a factor of about 66% for a given power.

Microwave frequency modulation to enhance Dissolution Dynamic Nuclear Polarization

Bornet, A., et al., Microwave frequency modulation to enhance Dissolution Dynamic Nuclear Polarization. Chem. Phys. Lett., 2014. 602: p. 63-67.

http://www.sciencedirect.com/science/article/pii/S0009261414002826

Hyperpolarization by Dissolution Dynamic Nuclear Polarization is usually achieved by monochromatic microwave irradiation of the ESR spectrum of free radicals embedded in glasses at 1.2 K and 3.35 T. Hovav et al. (2014) have recently shown that by using frequency-modulated (rather than monochromatic) microwave irradiation one can improve DNP at 3.35 T in the temperature range 10–50 K. We show in this Letter that this is also true under Dissolution-DNP conditions at 1.2 K and 6.7 T. We demonstrate the many virtues of using frequency-modulated microwave irradiation: higher polarizations, faster build-up rates, lower radical concentrations, less paramagnetic broadening, more efficient cross-polarization, and less critical frequency adjustments.

Microwave frequency modulation to enhance Dissolution Dynamic Nuclear Polarization

Bornet, A., J. Milani, B. Vuichoud, A.J. Perez Linde, G. Bodenhausen, and S. Jannin, Chem. Phys. Lett., 602, (2014)

http://www.sciencedirect.com/science/article/pii/S0009261414002826

Hyperpolarization by Dissolution Dynamic Nuclear Polarization is usually achieved by monochromatic microwave irradiation of the ESR spectrum of free radicals embedded in glasses at 1.2 K and 3.35 T. Hovav et al. (2014) have recently shown that by using frequency-modulated (rather than monochromatic) microwave irradiation one can improve DNP at 3.35 T in the temperature range 10–50 K. We show in this Letter that this is also true under Dissolution-DNP conditions at 1.2 K and 6.7 T. We demonstrate the many virtues of using frequency-modulated microwave irradiation: higher polarizations, faster build-up rates, lower radical concentrations, less paramagnetic broadening, more efficient cross-polarization, and less critical frequency adjustments.

Design and characterization of a W-band system for modulated DNP experiments

Guy, M.L., L. Zhu, and C. Ramanathan, Design and characterization of a W-band system for modulated DNP experiments. J. Magn. Reson., 2015. 261: p. 11-18.

http://www.sciencedirect.com/science/article/pii/S1090780715002190

Magnetic-field and microwave-frequency modulated DNP experiments have been shown to yield improved enhancements over conventional DNP techniques, and even to shorten polarization build-up times. The resulting increase in signal-to-noise ratios can lead to significantly shorter acquisition times in signal-limited multi-dimensional NMR experiments and pave the way to the study of even smaller sample volumes. In this paper we describe the design and performance of a broadband system for microwave frequency- and amplitude-modulated DNP that has been engineered to minimize both microwave and thermal losses during operation at liquid helium temperatures. The system incorporates a flexible source that can generate arbitrary waveforms at 94 GHz with a bandwidth greater than 1 GHz, as well as a probe that efficiently transmits the millimeter waves from room temperature outside the magnet to a cryogenic environment inside the magnet. Using a thin-walled brass tube as an overmoded waveguide to transmit a hybrid HE11 mode, it is possible to limit the losses to 1 dB across a 2 GHz bandwidth. The loss is dominated by the presence of a quartz window used to isolate the waveguide pipe. This performance is comparable to systems with corrugated waveguide or quasi-optical components. The overall excitation bandwidth of the probe is seen to be primarily determined by the final antenna or resonator used to excite the sample and its coupling to the NMR RF coil. Understanding the instrumental limitations imposed on any modulation scheme is key to understanding the observed DNP results and potentially identifying the underlying mechanisms. We demonstrate the utility of our design with a set of triangular frequency-modulated DNP experiments.

Have a question?

If you have questions about our instrumentation or how we can help you, please contact us.