Category Archives: Endogenous Radicals

Endogenous dynamic nuclear polarization NMR of hydride-terminated silicon nanoparticles #DNPNMR

Ha, Michelle, Alyxandra N. Thiessen, Ivan V. Sergeyev, Jonathan G.C. Veinot, and Vladimir K. Michaelis. “Endogenous Dynamic Nuclear Polarization NMR of Hydride-Terminated Silicon Nanoparticles.” Solid State Nuclear Magnetic Resonance 100 (August 2019): 77–84. 

https://doi.org/10.1016/j.ssnmr.2019.04.001.

Silicon nanoparticles (SiNPs) are intriguing materials and their properties fascinate the broader scientific community; they are also attractive to the biological and materials science sub-disciplines because of their established biological and environmental compatibility, as well as their far-reaching practical applications. While characterization of the particle nanostructure can be performed using 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy, poor sensitivity due to low Boltzmann population and long acquisition times hinder in-depth studies of these potentially game-changing materials. In this study, we compare two dynamic nuclear polarization (DNP) NMR protocols to boost 29Si sensitivity in hydride-terminated SiNPs. First, we assess a traditional indirect DNP approach, where a nitroxide biradical (AMUPol or bCTbk) is incorporated into a glassing agent and transferred through protons (e− → 1H → 29Si) to enhance the silicon. In this mode, electron paramagnetic resonance (EPR) spectroscopy demonstrated that the hydride-terminated surface was highly reactive with the exogenous biradicals, thus decomposing the radicals within hours and resulting in an enhancement factor, ε, of 3 (TB = 15 s) for the 64 nm SiNP, revealing the surface components. Secondly, direct DNP NMR methods were used to enhance the silicon without the addition of an exogenous radical (i.e., use of dangling bonds as an endogenous radical source). With radical concentrations <1 mM, 29Si enhancements were obtained for the series of SiNPs ranging from 3 to 64 nm. The ability to use direct 29Si DNP transfer (e− → 29Si) shows promise for DNP studies of these inorganic nanomaterials (ε = 6 (TB = 79 min) for 64 nm SiNPs) with highly reactive surfaces, showing the sub-surface and core features. These preliminary findings lay a foundation for future endogenous radical development through tailoring the surface chemistry, targeting further sensitivity gains.

Persistent Radicals of Self-assembled Benzophenone bis-Urea Macrocycles: Characterization and Application as a Polarizing Agent for Solid-state DNP MAS Spectroscopy #DNPNMR

DeHaven, B.A., et al., Persistent Radicals of Self-assembled Benzophenone bis-Urea Macrocycles: Characterization and Application as a Polarizing Agent for Solid-state DNP MAS Spectroscopy. Chemistry, 2017. 23(34): p. 8315-8319.

https://www.ncbi.nlm.nih.gov/pubmed/28423212

UV-irradiation of a self-assembled benzophenone bis-urea macrocycle generates mum amounts of radicals that persist for weeks under ambient conditions. High-field EPR and variable-temperature X-band EPR studies suggest a resonance stabilized radical pair through H-abstraction. These endogenous radicals were applied as a polarizing agent for magic angle spinning (MAS) dynamic nuclear polarization (DNP) NMR enhancement. The field-stepped DNP enhancement profile exhibits a sharp peak with a maximum enhancement of on/off =4 superimposed on a nearly constant DNP enhancement of on/off =2 over a broad field range. This maximum coincides with the high field EPR absorption spectrum, consistent with an Overhauser effect mechanism. DNP enhancement was observed for both the host and guests, suggesting that even low levels of endogenous radicals can facilitate the study of host-guest relationships in the solid-state.

Dynamic nuclear polarization of nucleic acid with endogenously bound manganese

Wenk, P., et al., Dynamic nuclear polarization of nucleic acid with endogenously bound manganese. J Biomol NMR, 2015: p. 1-13.

http://www.ncbi.nlm.nih.gov/pubmed/26219517

We report the direct dynamic nuclear polarization (DNP) of 13C nuclei of a uniformly [13C,15N]-labeled, paramagnetic full-length hammerhead ribozyme (HHRz) complex with Mn2+ where the enhanced polarization is fully provided by the endogenously bound metal ion and no exogenous polarizing agent is added. A 13C enhancement factor of epsilon = 8 was observed by intra-complex DNP at 9.4 T. In contrast, “conventional” indirect and direct DNP experiments were performed using AMUPol as polarizing agent where we obtained a 1H enhancement factor of epsilon approximately 250. Comparison with the diamagnetic (Mg2+) HHRz complex shows that the presence of Mn2+ only marginally influences the (DNP-enhanced) NMR properties of the RNA. Furthermore two-dimensional correlation spectra (15N-13C and 13C-13C) reveal structural inhomogeneity in the frozen, amorphous state indicating the coexistence of several conformational states. These demonstrations of intra-complex DNP using an endogenous metal ion as well as DNP-enhanced MAS NMR of RNA in general yield important information for the development of new methods in structural biology.

Endogenous Stable Radicals for Characterization of Thermally Carbonized Porous Silicon by Solid-State Dynamic Nuclear Polarization 13C NMR

Riikonen, J., et al., Endogenous Stable Radicals for Characterization of Thermally Carbonized Porous Silicon by Solid-State Dynamic Nuclear Polarization13C NMR. The Journal of Physical Chemistry C, 2015. 119(33): p. 19272-19278.

http://dx.doi.org/10.1021/acs.jpcc.5b05970

As with all nanomaterials, characterization of the surface chemistry of mesoporous silicon (PSi) is crucial for the development in its diverse applications. Nuclear magnetic resonance (NMR) is one of the most powerful methods to study the chemistry of nanomaterials, but it is currently underutilized with PSi due to low signal-to-noise ratios achieved with this material which lead to very long measurement times. Here we show that endogenous radicals exist in thermally carbonized PSi and demonstrate the feasibility of solid-state dynamic nuclear polarization (DNP) NMR without addition of organic radicals. Use of DNP NMR is demonstrated to highly improve the signal-to-noise ratio while significantly reducing the measurement times. This technique opens new possibilities for the use of more advanced NMR techniques allowing the detailed characterization of complex materials such as PSi. Furthermore, the chemical structure of thermally carbonized PSi is studied by complementary techniques, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy.

Have a question?

If you have questions about our instrumentation or how we can help you, please contact us.